На	Hall Ticket Number:	4
		e No. : 31302
	VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERA	ABAD
	B.E. (E.C.E.) III Year I-Semester (Main) Examinations, Nov./Dec20	16
	Digital Integrated Circuits and Applications	
	Time. Director	k. Marks: 70
	Note: Answer ALL questions in Part-A and any FIVE from Part-B	
	$Part-A (10 \times 2 = 20 Marks)$	
	1. Define propagation delay and noise margin of a digital IC.	
	2. Is direct interfacing of CMOS to TTL gates possible? Justify.	
	 Interpret the effect on Noise margin and Power dissipation in CMOS IC with the i power supply (V_{DD}). 	increase in
	4. Define dynamic MOS logic. When is it preferred?	
	5. Design full subtractor circuit using two 4×1 line multiplexers.	
	6. Show that IC74138 can be used as a Decoder and a Demultiplexer.	
	7. Define set-up time and hold time for a flip-flop.	
	Draw the circuit diagram of a serial input-serial output shift register and mention sta with this function.	andard ICs
	9. Brief about PLA and how capacity of PLA is specified?	
	10. Design a RAM system of 1K×8 bit capacity using 512×8 bit RAM devices.	
	Part-B $(5 \times 10 = 50 \text{ Marks})$	
	11. a) Write significance of open collector output of a TTL gate. What is its utility? circuit showing open collector output and pull-up resistor.	? Draw the [5]
	b) List various specifications of digital ICs. Give some typical values of each of the	nem. [5]
	12. a) Explain the working of two input ECL-OR/NOR gate with the help of a neat di	agram. [6]
	b) Describe the operation of a CMOS transmission gate and give its applications.	[4]
	13. a) Construct a 5×32 line decoder with four 3×8 line decoders and one 2×4 line de	ecoder. [5]
	b) Design a two-bit magnitude comparator with suitable gates.	[5]
	14. a) Design a mod-5 lock free synchronous counter using Master Slave JK flip-flop	
	timing diagram for a continuous clock.	[5]
	b) Design a universal Shift register using D-flip flops.	[5]
	15. a) Implement a 3-bit binary to gray code converter using suitable PLD.	[5]
	b) Distinguish between ROM and RAM. Explain DRAM cell with read, write a control signals.	and refresh [5]
	16. a) Determine the maximum number of 7400 TTL NAND gate inputs that can be	driven by a [4]

7400 NAND gate TTL output. From the data sheet I_{OL} (max) = 16 mA;

b) Describe the operation of four input CMOS NAND gate with a circuit diagram.

 $I_{IL}(max) = -1.6 \text{ mA}; I_{OH}(max) = -400 \mu\text{A}; I_{IH}(max) = 40 \mu\text{A}.$

17. Write short notes on any two of the following:

Single Digit BCD adder

7490 counter

PLA architecture.

[6]

[5]

[5]

[5]